

LA FONCTION EXPONENTIELLE

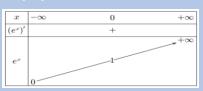
Définition :

- Notée $x \to exp(x)$ ou $x \to e^x$
- Unique fonction définie sur \mathbb{R} , solution de l'équation différentielle $\begin{cases} f'(x) = f(x) \\ f(0) = 1 \end{cases}$

Propriétés de la fonction exponentielle :

- Valeurs particulières : $e^0 = 1$; $e^1 = e \approx 2.718$
- $\forall x \in \mathbb{R} : e^x \neq 0$; $e^x > 0$; $(e^x)' = e^x$

• Tableau de variations :





Règles de calcul

 $\forall a, b \in \mathbb{R}^2 \ et \ n \in \mathbb{N}$

$$. e^a \times e^b = e^{a+b} \qquad . e^{-a}$$

$$e^{x} \times e^{z} = e^{x+z}$$
 . $e^{-x} = \frac{1}{e^{a}}$

$$\sqrt{\rho} = \rho^{\frac{1}{2}}$$

Équations:

• Type 1:
$$e^{u(x)} = e^{v(x)} \Leftrightarrow u(x) = v(x)$$

• <u>Cas particulier</u>: $e^{u(x)} = 1 \Leftrightarrow u(x) = 0$

• Type 2: $ae^{2x} + be^{x} + c = 0 \Rightarrow On \ pose \ X = e^{x}$

• <u>Type 3:</u> $e^{u(x)} = a \Leftrightarrow \begin{cases} \emptyset \text{ si } a \le 0 \\ u(x) = \ln a \text{ si } a > 0 \end{cases}$

Lien avec la fonction logarithme népérien :

 $x \to e^x$ est la fonction réciproque de $x \to \ln x$

$$\Leftrightarrow \forall x \in \mathbb{R}$$
, $\ln e^x = x$ et $\forall x > 0$ $e^{\ln x} = x$

La fonction composée $x \rightarrow e^{u(x)}$:

Définie et dérivable ssi $\mathfrak{u}(\mathfrak{x})$ l'ess

$$(e^{u(x)})' = u'(x)e^{u(x)}$$

Le nombre *e* :

Constante de Neper, définie par

$$e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!} \approx 2,7182818...$$