DÉNOMBREMENT

LES

OUTILS

Factorielle n

Permutation de n éléments d'un ensemble à n éléments.

$$n! = n(n-1) \dots 2 \times 1$$
 et $0! = 1$

Exemples:

Nombre de classements possible d'un course

Nombre d'anagrammes d'un mot composé de lettre distinctes...

Arrangement

Permutation de p éléments parmi n $(p \le n)$: $A_n^p = \frac{n!}{(n-p)!}$

Assimilé à un tirage sans répétition & l'ordre compte.

Exemples:

Nombre de podiums dans une course ; nombre de bureau dans une association (président, vice président, trésorier) ; nombre de tirages sans remise, dans une urne en tenant compte de l'ordre ...

p-liste

Liste de p éléments distincts ou non, d'un ensemble à n éléments : n^p

Assimilé à un tirage <u>avec répétition</u> & <u>l'ordre compte</u>.

Exemples:

Nombre de codes de Carte Bleu ; nombre de numéros de téléphone ; nombre de numéros d'immatriculation d'un voiture...

Combinaisons

Combinaison de p éléments parmi n $(p \le n)$: $\binom{n}{p} = \frac{n!}{p!(n-p)!}$

Assimilé à un tirage <u>sans répétition</u> & <u>sans tenir compte de</u> <u>l'ordre</u>.

Exemples:

Nombres de tirages au Loto, à l'Euro Million; nombre de façons de tirer simultanément 5 cartes dans un jeu de 32 cartes, nombre de poignées de mains dans un groupe de *n* personnes...

Principe additif / multiplicatif

On dénombre une liste constituée de plusieurs lites (ou tirages). Faut-il additionner ou multiplier les résultats ?

- Si les étapes sont reliées par un « et » ⇒ on multiplie.
- Si les étapes sont reliée par un « ou » ⇒ on additionne.

Synthèse :		
Type de Tirage	Avec répétition	Sans répétition (Éléments distincts)
On tient compte de l'ordre	p-liste	Arrangement
On ne tient pas compte de l'ordre	Combinaison à répétition (Hors programme)	Combinaison

Nombre de parties d'un ensemble à n éléments : 2^n

 $\underline{Exemples:} E = \{a; b; c\}$

P(E) =

 $\{\emptyset; a; b; c; ab; ac; bc; abc\}: 8$

éléments, soit 2³