COMPOSITION

Définition:

f, g définie sur D_f et D_g .

 $\forall x$ tel que $g(D_f) \in D_f$ la composée de g par f, notée f o g (se lite f « rond » g) est définie par

$$(f \circ g)(x) = f(g(x))$$

 \triangle L'opérateur o n'est pas commutatif. $f \circ g \neq g \circ f$

$$\forall x \in D_f, (g \circ f)(x) = g(f(x)) = \sqrt{1-x} + 5 \neq (f \circ g)(x) = \sqrt{-x-4}$$

Exemple:

$$f(x) = \sqrt{1-x}$$
 et $g(x) = x+5$, définies sur $D_f =]-\infty$; 1] et $D_g = \mathbb{R}$.

 $f \circ g$ existe ssi $g(x) \in D_f \Leftrightarrow x + 5 \le 1 \Leftrightarrow x \le -4$

$$\forall x \in]-\infty; -4], (f \circ g)(x) = f(g(x)) = \sqrt{1-(x+5)} = \sqrt{-x-4}$$

Variations de la fonction composée :

- Si f et g ont les mêmes variations $\Rightarrow f \circ g$ est croissante
- Si f et g ont des variations contraires $\Rightarrow f \circ g$ est décroissante

Exemple:

Soit f, définie sur \mathbb{R} par $f(x) = e^{-x^2} = e^x o(-x^2)$

 $u(x) = e^x$ est croissante sur \mathbb{R}

- $v(x) = -x^2$ croissante sue $\mathbb{R}_- \Rightarrow u$ et v mêmes var donc uov croissante
- $v(x) = -x^2$ décroissante sue $\mathbb{R}_+ \Rightarrow u$ et v var contraires donc uov décroissante

Dérivée d'une fonction composée :

 $(v \circ u)' = u' \times v' \circ u$

Nouvelles formules

de dérivées

$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$	$(\sin u)' = u' \cos u$
$(u^n)' = nu'u^{n-1}$	$(e^u)'=u'e^u$
$(\cos u)' = -u' \sin u$	$(\ln u)' = \frac{u'}{u}$

Fonctions réciproques :

f et g sont 2 fonction réciproques ssi f, g sont monotones et

- $\forall x \text{ tq } g(x) \in D_f : (f \circ g)(x) = x$
- $\forall x \text{ tq } f(x) \in D_g : (gof)(x) = x$

 $x \to \cos x$, $x \in [0; \pi]$ et $x \to \arccos x$, $x \in [-1; 1]$

 $x \to \sin x$, $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ et $x \to \arcsin x$, $x \in [-1; 1]$

 $x \to e^x$, $x \in \mathbb{R}$ et $x \to \ln x$, $x \in [0; +\infty[$

 $x \to x^2, x \in [0; +\infty[$ et $x \to \sqrt{x}, x \in [0; +\infty[$...

CONVEXITÉ

Définition:

f est une fonction définie, continue et 2 fois dérivable sur I

Dérivée seconde :

Soit f, 2 fois dérivable sur $I : \forall x \in I, f''(x) = (f'(x))$

f est convexe sur I ssi $\begin{cases} C_f \ est \ au-dessus \ de \ ses \ tangentes \\ f'est \ croissante \\ f''(x) \geq 0 \end{cases}$

f est concave sur I ssi $\begin{cases} C_f \ est \ en-dessous \ de \ ses \ tangentes \ f'est \ d\'ecroissante \ f''(x) \leq 0 \end{cases}$

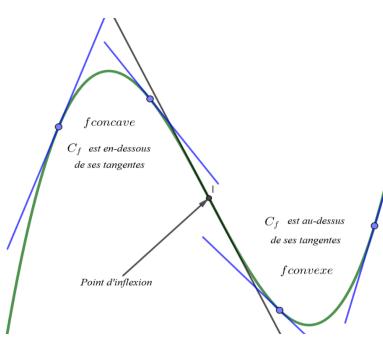
Exemples:

$$x \rightarrow x^2$$

$$x \rightarrow e^x$$

$$x \to x^3$$
 , $x \ge 0$

$$x \to \frac{1}{x}$$
, $x > 0$



Exemples:

$$x \to \sqrt{x}$$

$$x \to \ln x$$

$$x \to x^3$$
, $x \le 0$

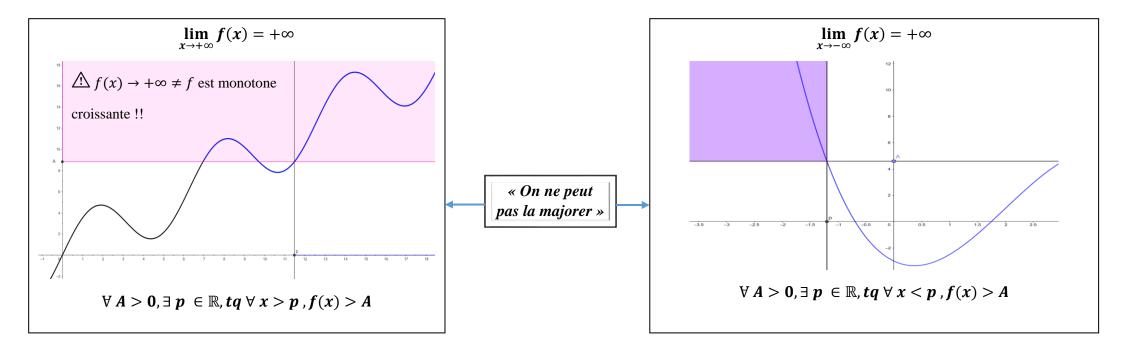
$$x \to \frac{1}{x}$$
, $x < 0$

Point d'inflexion:

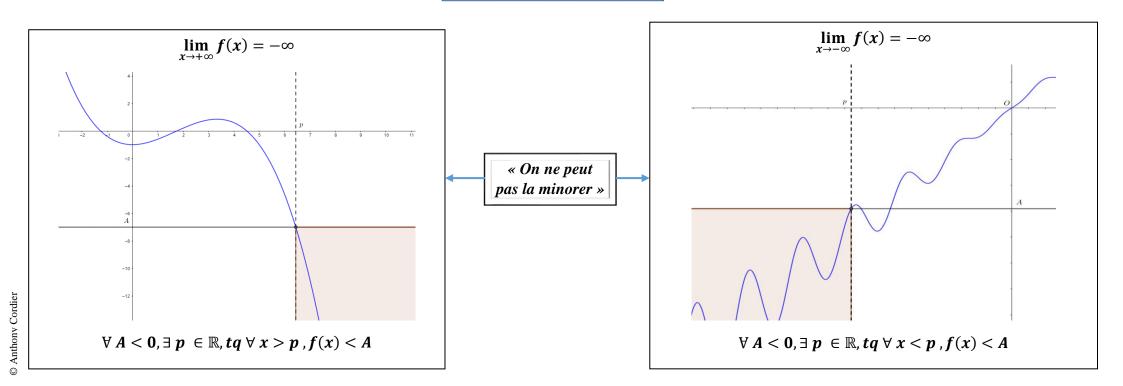
f est une fonction définie, continue et 2 fois dérivable en x = a

C_f admet 1 point d'inflexion en x = a ssi :

 $\begin{cases} la \ tangente \ en \ x = a \ traverse \ C_f \ en \ x = a \\ f'change \ de \ variation \ en \ x = a \\ f''(x) \ s'annule \ ET \ change \ de \ signe \ en \ x = a \end{cases}$



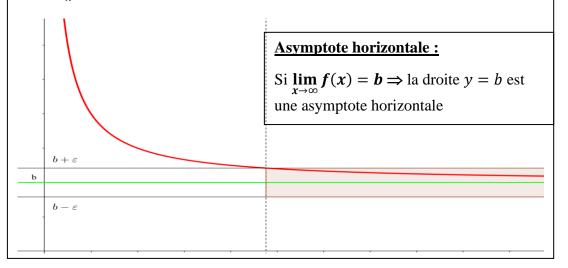
Limite ∞ en l' ∞



Limite finie en l'∞

$$\lim_{x\to\infty}f(x)=b$$

- $\lim_{x \to +\infty} f(x) = b \Leftrightarrow \forall \varepsilon > 0, \exists p \in \mathbb{R} \ tq \ \forall x > p, f(x) \in]b \varepsilon; b + \varepsilon[$
- $\lim_{x \to -\infty} f(x) = b \Leftrightarrow \forall \varepsilon > 0, \exists p \in \mathbb{R} \ tq \ \forall x < p, f(x) \in]b \varepsilon; b + \varepsilon[$



VOCABULAIRE

Convergence:

f ou (u_n) converge ssi elle tend vers une limite finie.

Divergence:

f ou (u_n) diverge ssi elle ne converge pas

 \triangle diverger \neq tendre vers $l' \infty$

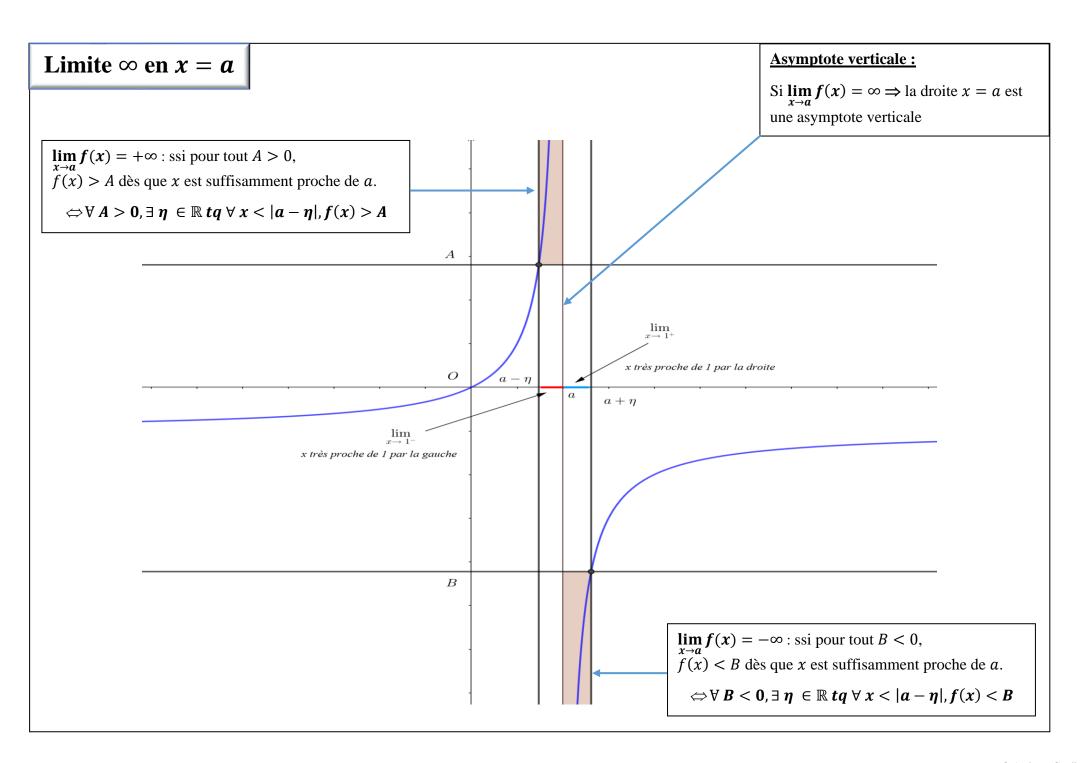
$$Diverger \Rightarrow \begin{cases} \lim_{x \to +\infty} f(x) = \pm \infty \\ ou \\ f \ n'a \ pas \ de \ limite$$

Limites des fonctions de référence :

Fonction de référence	$\lim_{n\to+\infty}f(x)$	$\lim_{n\to-\infty}f(x)$
ax + b (a > 0)	+∞	-∞
$ax + b \ (a < 0)$	-∞	+∞
x^2	+∞	+∞
x^3	+∞	-∞
x^{α} (où α est un entier pair)	+∞	+∞
x^{α} (où α est un entier impair)	+∞	-∞
$\frac{1}{x}$	0+	0-
$\frac{1}{x^2}$	0+	0+
$\frac{1}{x^{\alpha}} \ (où \ \alpha \ un \ entier > 0)$	0+	0 ⁺ si α pair 0 ⁻ si α impair
\sqrt{x}	+∞	non définie
e^x	+∞	0+

Fonction exponentielle et Croissances Comparées :

$$\forall n \in \mathbb{N}, \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n e^x = 0$$



Opérations sur les limites

Les 4 Formes Indéterminées (FI):

$$\infty - \infty$$
; $\frac{\infty}{\infty}$; $0 \times \infty$; $\frac{0}{0}$

Somme:

Limite de f	l	l	l	+∞	-00	+∞
Limite de g	l'	+∞	-00	+∞	-00	- 00
Limite de $(f+g)$	<i>l</i> + <i>l</i> '	+∞	-00	+∞	-00	FI

Produit:

Limite de f	l	<i>l>0</i>	<i>l>0</i>	<i>l</i> <0	<i>l</i> <0	$+\infty$	-∞	0
Limite de g	l'	$+\infty$	-∞	$+\infty$	-∞	$+\infty$	$+\infty$	<u>+</u> ∞
Limite de $f \times g$	l×l'	$+\infty$	-∞	-∞	$+\infty$	$+\infty$	-∞	FI

Quotient:

Limite type «
$$\frac{l}{0}$$
 »

Limite de	1	<i>l>0</i>	<i>l>0</i>	<i>l</i> <0	<i>l</i> <0	0	1	+∞	+∞	-∞	-∞	<u>+</u> ∞
Limite de	ı	1/0					L	1 00	1 00			I^{∞}
$\mid f \mid$		ou	ou	ou	ou							
		$+\infty$	$+\infty$	-∞	-∞							
7	11.40	0+	0-	0+	0-	0	,	11: 0	11 . 0	11: 0	11 . 0	,
Limite de	<i>l'≠0</i>	0+	0-	0+	0-	0	<u>+</u> ∞	<i>l'>0</i>	l'<0	<i>l'>0</i>	<i>l</i> '<0	$\pm \infty$
g												
Limite de	l	$+\infty$	-∞	∞	$+\infty$	FI	0	$+\infty$	-∞	-∞	$+\infty$	FI
$f \div g$	$\overline{l'}$											

Limite type $\frac{l}{0}$: Exemple

$$u(x) = \frac{-x}{x-1}$$
, définie sur $\mathbb{R} - \{1\}$

Limite en x = a = 1.

Comment déterminer si $x - 1 \rightarrow 0^+$ ou 0^- ?

On fait le tableau de signes de x - 1:

x	$-\infty$	1	$+\infty$
x-1	_	ģ	+

 \Rightarrow à gauche de 1 : 0⁻ et à droite de 1 : 0⁺

Limite à gauche de 1 : en 1

$$\lim_{x \to 1^{-}} -x = -1$$

$$\lim_{x \to 1^{-}} x - 1 = 0^{-}$$
Par quotient:
$$\lim_{x \to 1^{-}} u(x) = +\infty$$

Limite à droite de 1 : en 1⁺

$$\lim_{x \to 1^+} -x = -1$$

$$\lim_{x \to 1^+} x - 1 = 0^+$$
Par quotient:
$$\lim_{x \to 1^+} u(x) = -\infty$$

On pourrait conclure que la droite x = a est une <u>asymptote verticale</u>.

Théorèmes de comparaison et d'encadrement

On considère 3 fonctions f, g, h, définies au minium sur a; $+\infty$, où $a \in \mathbb{R}$

Théorèmes de comparaison :

- Si, $\forall x \geq p$, $f(x) \geq g(x)$ et $\lim_{x \to \infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$.
- $Si, \forall x \ge p, f(x) \le g(x)$ et $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$.

Théorème d'encadrement (Théorème des gendarmes) :

• $Si \forall x \ge p, g(x) \le f(x) \le h(x) et \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} h(x) = l \Longrightarrow \lim_{x \to +\infty} f(x) = l$

Valables en $-\infty$ si les fonctions sont définies.

Exemple 1:

Limite de la suite (u_n) définie sur \mathbb{N} par :

$$u_n = n - \sin(n+2)$$

$$\forall n \in \mathbb{N}, -1 \le \sin(n+2) \le 1$$

$$\Leftrightarrow$$
 1 \geq $-\sin(n+2) \geq -1$

$$\Leftrightarrow n+1 \ge \underbrace{n-\sin(n+2) \ge n-1}$$

On a donc $\forall n \in \mathbb{N}$, $u_n \ge n - 1$.

De plus
$$\lim_{n\to+\infty} n-1 = +\infty$$

D'après le théorème de comparaison,

$$\lim_{n\to +\infty}u_n=+\infty$$

Exemple 2:

Limite de la suite (u_n) définie sur \mathbb{N} par :

$$u_n = \cos 2n - n^2$$

$$\forall n \in \mathbb{N}, -1 \leq \cos 2n \leq 1$$

$$\Leftrightarrow -1 - n^2 \le \cos 2n - n^2 \le 1 - n^2$$

On a donc $\forall n \in \mathbb{N}$, $u_n \leq 1 - n^2$.

De plus
$$\lim_{n \to +\infty} 1 - n^2 = -\infty$$

D'après le théorème de comparaison,

$$\lim_{n\to+\infty}u_n=-\infty$$

Exemple 3:

Limite de la suite (u_n) définie sur \mathbb{N}^* par :

$$u_n = \frac{2 - \cos n^2}{n}$$

 $\forall n \in \mathbb{N}, -1 \le \cos n^2 \le 1$

$$\Leftrightarrow 1 \ge -\cos n^2 \ge -1$$

$$\Leftrightarrow$$
 3 \geq 2 $-\cos n^2 \geq 1$

$$\Leftrightarrow \frac{3}{n} \ge \frac{2 - \cos n^2}{n} \ge \frac{1}{n}$$

On a donc $\forall n \in \mathbb{N}$, $\frac{1}{n} \le u_n \le \frac{3}{n}$.

De plus
$$\lim_{n \to +\infty} \frac{1}{n} = \lim_{n \to +\infty} \frac{3}{n} = 0$$

D'après le théorème des gendarmes,

$$\lim_{n\to+\infty}u_n=0$$

Limite d'une Fonction Composée & Théorème du Point Fixe

Comment déterminer $\lim_{x\to a} (f \circ g)(x)$?

$$\operatorname{Si} \lim_{x \to a} g(x) = b$$

Alors,

$$\operatorname{Et} \lim_{X \to b} f(X) = c$$

 $\lim_{x \to a} f(g(x)) = c$

Exemple 1: $\lim_{x \to +\infty} e^{-x^2 + 1}$

 $f(x) = e^{-x^2+1}$ est le composée de $x \to -x^2 + 1$ dans $x \to e^x$.

$$\lim_{x \to +\infty} -x^2 + 1 = -\infty, \text{ et } \lim_{x \to -\infty} e^X = 0.$$

Donc par composition, $\lim_{x\to+\infty} e^{-x^2+1} = 0$.

Exemple 2: $\lim_{x\to-\infty} \sin(\frac{\pi x-1}{3x+1})$

f(x) est la composée de $x \to \frac{\pi x - 1}{3x + 1}$ dans $x \to \sin x$.

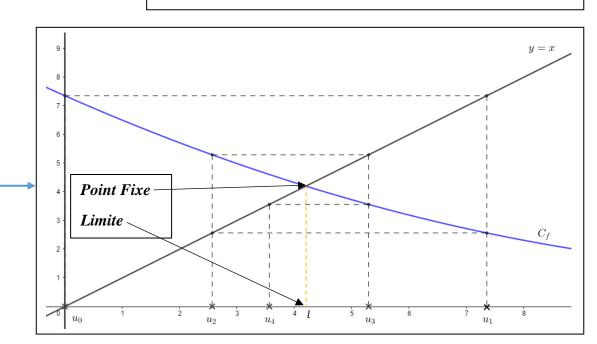
$$\lim_{x \to -\infty} \frac{\pi x - 1}{3x + 1} = \lim_{x \to -\infty} \frac{\pi x}{3x} = \lim_{x \to -\infty} \frac{\pi}{3} = \frac{\pi}{3}, \text{ et } \lim_{X \to \frac{\pi}{3}} \sin X = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

Donc, par composition, $\lim_{x \to -\infty} \sin(\frac{\pi x - 1}{3x + 1}) = \frac{\sqrt{3}}{2}$.

Théorème du point fixe :

- Si (u_n) est définie par $u_{n+1} = f(u_n)$
- De plus, si (u_n) est convergente

 \Rightarrow Alors la limite de la suite est solution de f(x) = x.



Lever les FI : Méthode 1 → Factorisation par le terme de plus haut degré

Exemple 1:
$$\lim_{x \to -\infty} \frac{2x^2 - x}{-3x^2 - 1} \Rightarrow \text{FI type } (\frac{\infty}{\infty})$$

On factorise par x^2 au numérateur et au dénominateur :

$$f(x) = \frac{2x^2 - x}{-3x^2 - 1} = \frac{x^2 \left(2 - \frac{x}{x^2}\right)}{x^2 \left(-3 - \frac{1}{x^2}\right)} = \frac{2 - \frac{1}{x}}{-3 - \frac{1}{x^2}}, \text{ Puis on passe aux limites}:$$

$$\lim_{x \to -\infty} 2 - \frac{1}{x} = 2 \operatorname{car} - \frac{1}{x} \to 0$$

$$\lim_{x \to -\infty} -3 - \frac{1}{x^2} = -3 \operatorname{car} - \frac{1}{x^2} \to 0$$

$$\lim_{x \to -\infty} \frac{2 - \frac{1}{x}}{-3 - \frac{1}{x^2}} = -\frac{2}{3}$$

$$\lim_{x \to -\infty} \frac{2 - \frac{1}{x}}{-3 - \frac{1}{x^2}} = -\frac{2}{3}$$

Conclusion:
$$\lim_{x \to -\infty} \frac{2x^2 - x}{-3x^2 - 1} = -\frac{2}{3}$$

Exemple 2:
$$\lim_{x \to +\infty} \frac{-2x^3 + 3x^2 - x + 4}{x^2 + x + 7} \implies \text{FI type } \frac{\infty}{\infty}$$

On factorise par *le plus haut degré commun*, ici, χ^2

$$f(x) = \frac{-2x^3 + 3x^2 - x + 4}{x^2 + x + 7} = \frac{x^2 \left(-2x + 3 - \frac{1}{x} + \frac{4}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{7}{x^2}\right)} = \frac{-2x + 3 - \frac{1}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} + \frac{7}{x^2}}$$

Passons aux limites, sachant que $-\frac{1}{r} \to 0, \frac{4}{r^2} \to 0, \frac{1}{r} \to 0$ et $\frac{7}{r^2} \to 0$

Puis,
$$\lim_{x \to +\infty} -2x + 3 = -\infty$$

Par somme,
$$\lim_{x \to +\infty} -2x + 3 - \frac{1}{x} + \frac{4}{x^2} = -\infty$$
 et $\lim_{x \to +\infty} 1 + \frac{1}{x} + \frac{7}{x^2} = 1$

Par Quotient,
$$\lim_{x \to +\infty} \frac{-2x+3-\frac{1}{x}+\frac{4}{x^2}}{1+\frac{1}{x}+\frac{7}{x^2}} = -\infty$$

Exemple 3:
$$\lim_{x \to -\infty} \sqrt{x^2 + 1} + 2x \implies \text{FI de type } \infty - \infty$$

On factorise par x^2 dans la racine carrée :

$$f(x) = \sqrt{x^2 + 1} + 2x = \sqrt{x^2 \left(1 + \frac{1}{x^2}\right)} + 2x = \sqrt{x^2} \times \sqrt{1 + \frac{1}{x^2}} + 2x = -x \sqrt{1 + \frac{1}{x^2}} + 2x = x \left(-\sqrt{1 + \frac{1}{x^2}} + 2\right)$$
, Puis on passe aux limites

$$\lim_{x \to -\infty} 1 + \frac{1}{x^2} = 1, \text{ donc par composition } \lim_{x \to -\infty} - \sqrt{1 + \frac{1}{x^2}} = -\sqrt{1} = -1$$

Par somme des limites,
$$\lim_{x \to -\infty} -\sqrt{1 + \frac{1}{x^2}} + 2 = -1 + 2 = 1$$

Puis,
$$\lim_{x \to -\infty} x = -\infty$$
, donc

Par produit des limites,
$$\lim_{x \to -\infty} x \left(-\sqrt{1 + \frac{1}{x^2}} + 2 \right) = -\infty$$

Rappel:
$$\sqrt{x^2} = |x| = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x \le 0 \end{cases}$$

Dans notre exemple, la limite s'étudie en $-\infty$, donc |x| = -x.

<u>Lever les FI</u>: Méthode $2 \rightarrow$ Multiplication par la quantité conjuguée

Exemple 1:
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x} \implies \text{FI de type } \infty - \infty$$

Quantité conjuguée de $\sqrt{x+1} - \sqrt{x}$: $\sqrt{x+1} + \sqrt{x}$

$$f(x) = \sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

$$\lim_{x \to +\infty} \sqrt{x+1} = +\infty \text{ et } \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Par somme des limites $\lim_{x \to +\infty} \sqrt{x+1} + \sqrt{x} = +\infty$

Par inverse,
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$$

Exemple 2:
$$\lim_{x\to 1} \frac{\sqrt{x+3}-2}{x-1} \implies \text{FI de type } \ll \frac{0}{0} \gg$$

$$f(x) = \frac{\sqrt{x+3}-2}{x-1} = \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)} = \frac{x+3-2^2}{(x-1)(\sqrt{x+3}+2)} = \frac{x-1}{(x-1)(\sqrt{x+3}+2)} = \frac{1}{\sqrt{x+3}+2}$$

On passe aux limites:

 $\lim_{x\to 1} x + 3 = 4$, donc par composée et par somme : $\lim_{x\to 1} \sqrt{x+3} + 2 = 4$

Donc par inverse, $\lim_{x\to 1} \frac{1}{\sqrt{x+3}+2} = \frac{1}{4}$

Lever les FI : Méthode 3 → Utilisation du Nombre dérivé

Nombre dérivé:
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

Exemple 1:
$$\lim_{x\to 1} \frac{\sqrt{2x+2}-2}{x-1} \implies \text{FI de type } \ll \frac{0}{0} \gg$$

On fait apparaître le taux d'accroissement : $\frac{f(x)}{\sqrt{2x+2}-\frac{c}{2}}$

$$\lim_{x \to 1} \frac{\sqrt{2x+2}-2}{x-1} = \lim_{x \to 1} \frac{f(x)-f(1)}{x-1} = f'(1)$$

Avec
$$f(x) = \sqrt{2x + 2}$$
, on a $f'(x) = \frac{2}{2\sqrt{2x+2}} = \frac{1}{\sqrt{2x+2}}$.

Ainsi,
$$f'(1) = \frac{1}{\sqrt{2 \times 1 + 2}} = \frac{1}{2}$$

Conclusion:

$$\lim_{x \to 1} \frac{\sqrt{2x+2} - 2}{x-1} = \frac{1}{2}$$

Exemple 2:
$$\lim_{x\to 0} \frac{e^x-1}{x} \implies \text{FI de type } (0,0)$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$$

Avec
$$f(x) = e^x$$
, donc $f'(x) = e^x$

Ainsi,
$$f'(0) = e^0 = 1$$

Conclusion:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

<u>Lever les FI</u>: Méthode $4 \rightarrow$ Fonction Rationnelle type « $\frac{P(x)}{Q(x)} \rightarrow \frac{0}{0}$ »

Méthode:

$$Si \lim_{x \to a} \frac{P(x)}{Q(x)} \to \frac{0}{0}$$

Alors P(a) = Q(a) = 0. Donc x = a est une racine des 2 polynômes \Rightarrow On peut les factoriser par (x - a).

Le quotient $\frac{P(x)}{Q(x)}$ peut donc être simplifié par (x - a).

Exemple 1: $\lim_{x \to 3} \frac{2x^2 + 4x - 30}{x - 3} \implies \text{FI de type } \ll \frac{P(x)}{Q(x)} \to \frac{0}{0} \gg$

$$P(x) = 2x^2 + 4x - 30$$
 et $Q(x) = x - 3$.

Or,
$$\lim_{x \to 3} P(x) = P(3) = 0$$
 et $\lim_{x \to 3} Q(x) = Q(3) = 0$.

On en déduit : P(3) = 0, donc $x_1 = 3$ est une racine de P.

Rappel:

Produit des racines $x_1 \times x_2 = \frac{c}{a}$

$$\Leftrightarrow 3x_2 = -\frac{30}{2} = -15 \Leftrightarrow x_2 = -\frac{15}{3} = -5.$$

$$\Rightarrow P(x) = 2(x-3)(x+5) ; donc \frac{2x^2+4x-30}{x-3} = \frac{2(x-3)(x+5)}{x-3} = 2(x+5)$$

Conclusion:

$$\lim_{x \to 3} \frac{2x^2 + 4x - 30}{x - 3} = \lim_{x \to 3} 2(x + 5) = 16$$

Exemple 2:
$$\lim_{x \to +1} \frac{x^2 + 6x - 7}{3x^2 + 3x - 6} \implies \text{FI de type } \ll \frac{P(x)}{Q(x)} \to \frac{0}{0} \gg$$

$$P(x) = x^2 + 6x - 7$$
 et $Q(x) = 3x^2 + 3x - 6$

$$\lim_{x \to 1} P(x) = P(1) = 0 \text{ et } \lim_{x \to 1} Q(x) = Q(1) = 0.$$

P(1) = Q(1) = 0, donc $x_1 = 1$ est une racine de P et Q.

Pour P(x):

$$x_1 \times x_2 = \frac{c}{a} \Leftrightarrow x_2 = \frac{c}{a} = -7$$
. Donc $P(x) = (x - 1)(x + 7)$

Pour Q(x):

$$x_2 = \frac{c}{a} = -2$$
. Donc $Q(x) = 3(x-1)(x+2)$.

$$\Rightarrow$$
 On simplifie l'expression : $\frac{x^2+6x-7}{3x^2+3x-6} = \frac{(x-1)(x+7)}{3(x-1)(x+2)} = \frac{x+7}{3(x+2)}$

Conclusion:

$$\lim_{x \to +1} \frac{x^2 + 6x - 7}{3x^2 + 3x - 6} = \lim_{x \to +1} \frac{x + 7}{3(x + 2)} = \frac{1 + 7}{3(1 + 2)} = \frac{8}{9}$$

CONTINUITÉ

2ème Approche - Définition :

f est continue en x = a ssi

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$$

Exemple: fonction définie par morceaux

$$f(x) = \begin{cases} x^2 - x + 1 & \text{si } x \le 2\\ \frac{2x - 1}{x - 1} & \text{si } x > 2 \end{cases}$$

Étude de la continuité en x = 2.

$$u(x) = x^2 - x + 1$$
et $v(x) = \frac{2x-1}{x-1}$

$$\Rightarrow f(x) = \begin{cases} u(x) & \text{si } x \le 2 \\ v(x) & \text{si } x > 2 \end{cases}$$

D'une part : f(2) = u(2) = 3

Puis,
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} v(x) = \lim_{x \to 2^+} \frac{2x - 1}{x - 1} = 3$$

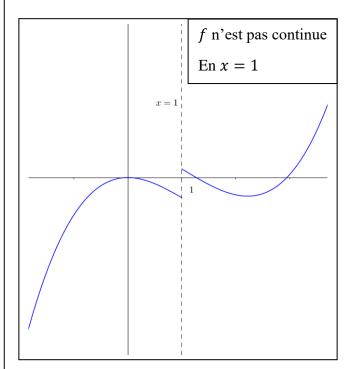
Conclusion:

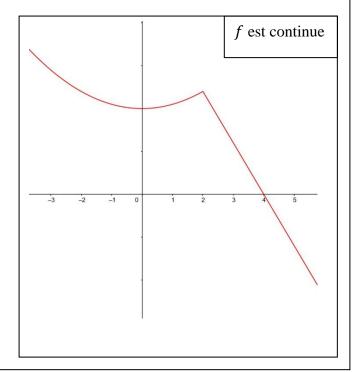
$$\lim_{x \to 2^+} f(x) = f(2) = 3.$$

Donc f est continue en x = 2

1ère Approche:

La fonction f est continue sur I ssi on peut la tracer dans lever de stylo





Théorème:

Toute fonction dérivable sur I est continue sur I.

- Polynômes : continus sur R.
- Fonctions rationnelles : continues sur leur domaine de définition.
- Fonction $x \to \sqrt{x}$: continue sur $[0; +\infty[$.
- Fonctions trigonométriques $x \to \cos x$ et $x \to \sin x$: continues sur \mathbb{R} .

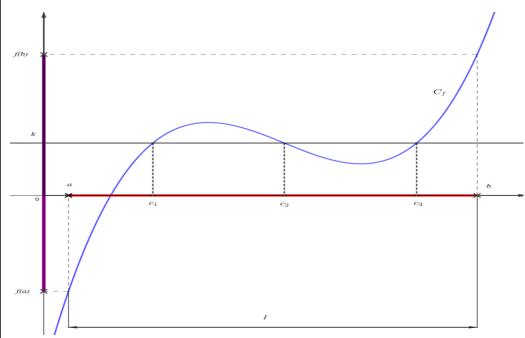
⇒ De façon générale, toute fonction obtenue par opération ou composition de fonctions continues est continue sur son ensemble de définition.

APPLICATION : TVI & Théorème de la Bijection

Théorème des Valeurs Intermédiaires :

f définie, continue sur I = [a; b].

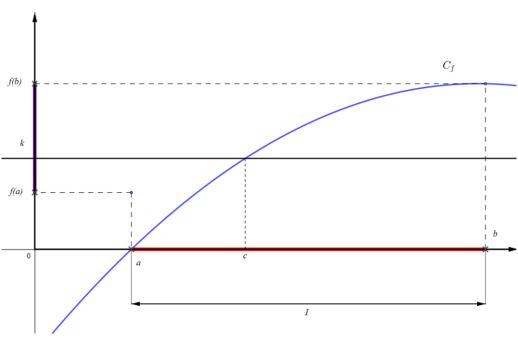
 $\forall k \in [f(a); f(b)], l'équation <math>f(x) = k$ admet au moins une solution dans [a; b].



Théorème de la Bijection :

f définie, continue, strictement monotone sur I = [a; b].

 $\forall k \in [f(a); f(b)]$, l'équation f(x) = k admet exactement une solution dans [a; b].



Exemple : Montrons que $x^3 - 3x^2 + 3x - 2 = 0$ admet une unique solution dans \mathbb{R} .

On va étudier la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + 3x - 2$ et montrer qu'elle s'annule une seule fois.

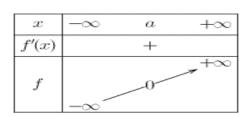
On démontre facilement que $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$

$$f'(x) = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3(x - 1)^2 \ge 0$$
. On dresse alors de tableau de variations ci-contre : \rightarrow

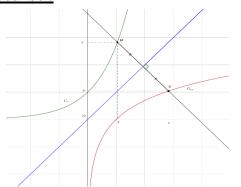
Rédigeons le Thme de la Bijection :

f est <u>continue</u> (car dérivable), strictement <u>croissante et monotone</u> sur \mathbb{R} à valeurs dans $]-\infty;+\infty[$.

Or $0 \in]-\infty; +\infty[$, donc d'après le <u>Théorème de la bijection</u>, l'équation f(x)=0 admet une unique solution dans \mathbb{R} .



Courbe :



 C_{ln} et C_{exp} sont symétriques par rapport à la droite y = x

<u>Dérivée – Variations :</u>

 $x \to \ln x$ est dérivable sur]0; $+\infty$ [et $(\ln x)' = \frac{1}{x}$

Donc ln est strictement croissante sur]0; $+\infty[$

Fonction Composée

 $\ln u(x)$ existe ssi u(x) > 0

$$(\ln u)' = \frac{u'}{u}$$

x	$0 1 +\infty$
$\frac{1}{x}$	+
ln	

La Fonction logarithme népérien.

notée $\ln x$ est la fonction réciproque de la fonction exponentielle.

 \rightarrow Domaine de définition :]0; $+\infty$ [

 \rightarrow Domaine image : \mathbb{R}

Règles de Calcul:

 $\forall a, b \in \mathbb{R}_+^*, n \in \mathbb{N}:$

$$\ln ab = \ln a + \ln b$$

$$\ln \frac{a}{b} = \ln a - \ln b$$

$$\ln\frac{1}{b} = -\ln b$$

$$\ln a^n = n \ln a$$

$$\ln \sqrt{a} = \frac{1}{2} \ln a$$

Equation $\ln u(x) = \ln v(x)$

$$\begin{cases} u(x) > 0 \\ v(x) > 0 \end{cases} = > D_E$$

On applique $x \to e^x$

On résout dans $D_E u(x) = v(x)$

Limites

Limites aux bornes :

$$\lim_{x \to +\infty} \ln x = +\infty \quad et \quad \lim_{x \to 0^+} \ln x = -\infty$$

Croissances comparées :

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \quad et \quad \lim_{x \to 0^+} x^n \ln x = 0$$

Avec le nombre dérivé :

$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

Equation $a(\ln x)^2 + b \ln x + c = 0$

On pose $X = \ln x$, pour x > 0

On résout $aX^2 + bX + c$ et on revient au changement de variable.

TERMINALES

LIMITES DE FONCTIONS

METHODES

La Factorisation par le terme de plus haut degré :

△ Cette méthode est valable UNIQUEMENT en l'infini.

Limite d'une fonction rationnelle, faisant apparaître la FI $\frac{\infty}{\infty}$:

a.
$$\lim_{x \to -\infty} \frac{2x^2 - x}{-3x^2 - 1}$$
:

Méthode 1:

Nous pouvons simplement faire apparaître la domination des termes de plus haut degré. En effet, x est « négligeable » devant x^2 en l'infini.

Ainsi,
$$\lim_{x \to -\infty} \frac{2x^2 - x}{-3x^2 - 1} = \lim_{x \to -\infty} \frac{2x^2}{-3x^2} = \lim_{x \to -\infty} \frac{2}{-3} = -\frac{2}{3}$$

Si votre professeur accepte cette méthode, elle sera largement à privilégier par rapport à la 2^{ème} façon que nous allons aborder.

Nous venons de montrer que $\lim_{x \to -\infty} \frac{2x^2 - x}{-3x^2 - 1} = -\frac{2}{3}$, donc la droite d'équation $y = -\frac{2}{3}$ est une asymptote horizontale à la courbe représentative de la fonction $x \to \frac{2x^2 - x}{-3x^2 - 1}$ en $-\infty$.

Méthode 2:

Factorisons par le terme de plus haut degré et modifions l'écriture de la fonction.

$$\frac{2x^2 - x}{-3x^2 - 1} = \frac{x^2 \left(2 - \frac{x}{x^2}\right)}{x^2 \left(-3 - \frac{1}{x^2}\right)} = \frac{2 - \frac{1}{x}}{-3 - \frac{1}{x^2}}$$

Pensez systématique à simplifier vos facteurs, sinon, la FI $\frac{\infty}{\infty}$ sera toujours présente.

Passons à la limite :

$$\lim_{x \to -\infty} 2 - \frac{1}{x} = 2 \operatorname{car} - \frac{1}{x} \to 0$$

$$\lim_{x \to -\infty} -3 - \frac{1}{x^2} = -3 \operatorname{car} - \frac{1}{x^2} \to 0$$
Par Quotient,
$$\lim_{x \to -\infty} \frac{2 - \frac{1}{x}}{-3 - \frac{1}{x^2}} = -\frac{2}{3}$$

Nous venons donc de montrer, avec un peu plus d'étapes, que $\lim_{x\to-\infty} \frac{2x^2-x}{-3x^2-1} = -\frac{2}{3}$

b.
$$\lim_{x \to +\infty} \frac{-2x^3 + 3x^2 - x + 4}{x^2 + x + 7}$$
:

Abordons cette limite, de type $\frac{\infty}{\infty}$, avec la méthode 2.

Nous pouvons aussi bien factoriser par x^3 au numérateur, x^2 au dénominateur, que par le plus haut degré commun, c'est-à-dire x^2 au numérateur et dénominateur. Je vous propose le $2^{\text{ème}}$ point de vue qui fait preuve « d'un peu plus de finesse ».

$$\frac{-2x^3 + 3x^2 - x + 4}{x^2 + x + 7} = \frac{x^2 \left(-2x + 3 - \frac{1}{x} + \frac{4}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{7}{x^2}\right)}$$

$$= \frac{-2x + 3 - \frac{1}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} + \frac{7}{x^2}}$$
On simplified par x^2

Passons aux limites, sachant que $-\frac{1}{x} \to 0, \frac{4}{x^2} \to 0, \frac{1}{x} \to 0$ et $\frac{7}{x^2} \to 0$

Puis,
$$\lim_{x \to +\infty} -2x + 3 = -\infty$$

Par somme,
$$\lim_{x \to +\infty} -2x + 3 - \frac{1}{x} + \frac{4}{x^2} = -\infty$$
 et $\lim_{x \to +\infty} 1 + \frac{1}{x} + \frac{7}{x^2} = 1$

Par Quotient, $\lim_{x \to +\infty} \frac{-2x + 3 - \frac{1}{x} + \frac{4}{x^2}}{1 + \frac{1}{x} + \frac{7}{x^2}} = -\infty$

Si nous avions utilisé la 1^{ère} méthode, nous aurions abouti beaucoup plus vite, mais si votre enseignant utilise cette méthode complète, vous devrez vous y plier!

La Méthode 1 donne :

$$\lim_{x \to +\infty} \frac{-2x^3 + 3x^2 - x + 4}{x^2 + x + 7} = \lim_{x \to +\infty} \frac{-2x^3}{x^2} = \lim_{x \to +\infty} -2x = -\infty$$

c.
$$\lim_{x \to -\infty} \sqrt{x^2 + 1} + 2x$$
: de type $\infty - \infty$

On commence d'abord par factoriser par x^2 dans la racine carrée.

$$\sqrt{x^2 + 1} + 2x = \sqrt{x^2 \left(1 + \frac{1}{x^2}\right)} + 2x = \sqrt{x^2} \times \sqrt{1 + \frac{1}{x^2}} + 2x$$

Faisons un point autour de $\sqrt{x^2}$:

$$\triangle \sqrt{x^2} \neq x$$

En effet, $\sqrt{(-3)^2} = 3$ et non -3

Cette écriture doit vous rappeler le chapitre sur la valeur absolue ! En effet, $\sqrt{x^2} = |x|$.

Rappelons que
$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$$

Dans notre exemple, la limite s'étudie en $-\infty$, donc |x| = -x.

Ainsi,

$$\sqrt{x^2 + 1} + 2x = -x\sqrt{1 + \frac{1}{x^2}} + 2x$$

$$= x\left(-\sqrt{1 + \frac{1}{x^2}} + 2\right)$$
On factorise par x

Passons aux limites:

$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$
, donc par somme, $\lim_{x \to -\infty} 1 + \frac{1}{x^2} = 1$, ainsi, $\lim_{x \to -\infty} -\sqrt{1 + \frac{1}{x^2}} = -\sqrt{1} = -1$

Par somme des limites,
$$\lim_{x \to -\infty} -\sqrt{1 + \frac{1}{x^2}} + 2 = -1 + 2 = 1$$

Puis,
$$\lim_{x \to -\infty} x = -\infty$$

Par produit des limites,
$$\lim_{x \to -\infty} x \left(-\sqrt{1 + \frac{1}{x^2}} + 2 \right) = -\infty$$
.

La multiplication par la quantité conjuguée :

a. un classique :
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$

Remarque : la factorisation par x dans la racine carrée, puis par \sqrt{x} n'aboutira malheureusement pas et mènera vers une nouvelle forme indéterminée de type $\infty \times 0$. N'hésitez pas à le faire pour vous en convaincre...

La quantité conjuguée de $\sqrt{x+1} - \sqrt{x}$ est $\sqrt{x+1} + \sqrt{x}$. Nous allons donc multiplier par cette quantité conjuguée au numérateur et au dénominateur.

$$\sqrt{x+1} - \sqrt{x} = \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}} = \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Passons aux limites:

$$\lim_{x \to +\infty} \sqrt{x+1} = +\infty \text{ et } \lim_{x \to +\infty} \sqrt{x} = +\infty$$

Donc par somme des limites $\lim_{x \to +\infty} \sqrt{x+1} + \sqrt{x} = +\infty$

Ainsi, par inverse, $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

b.
$$\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1}$$
: Fait intervenir la FI de type $\frac{0}{0}$

En effet,
$$\lim_{x\to 1} \sqrt{x+3} - 2 = 2 - 2 = 0$$
 et $\lim_{x\to 1} x - 1 = 0$

Levons cette FI à l'aide de la quantité conjuguée :

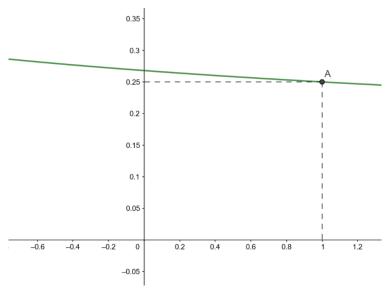
$$\frac{\sqrt{x+3}-2}{x-1} = \frac{(\sqrt{x+3}-2)(\sqrt{x+3}+2)}{(x-1)(\sqrt{x+3}+2)} = \frac{x+3-2^2}{(x-1)(\sqrt{x+3}+2)}$$
$$= \frac{x-1}{(x-1)(\sqrt{x+3}+2)} = \frac{1}{\sqrt{x+3}+2}$$

Passons maintenant aux limites:

$$\lim_{x \to 1} \sqrt{x+3} + 2 = 4$$

Donc par inverse, $\lim_{x\to 1} \frac{1}{\sqrt{x+3}+2} = \frac{1}{4}$

Illustration:



Nous avons tracé la fonction étudiée sur une fenêtre adaptée afin de faire apparaître la courbe en x = 1.

Le graphique ne fait pas figurer la valeur interdite mais nous pouvons bien voir la valeur $\frac{1}{4}$.

Utilisation du nombre dérivé :

Rappel:

Le nombre dérivé d'une fonction f en x = a, noté f'(a), est donné par :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Le nombre dérivé étant défini à partir d'une limite, il n'est donc pas surprenant de penser à utiliser cette formule pour calculer des limites.

Généralement, cette méthode intervient dans certains cas de formes indéterminées de type « $\frac{0}{0}$ ». Il s'agit de reconnaître, dans l'expression dont nous cherchons la limite, le taux d'accroissement d'une fonction f judicieusement choisie.

Exemples:

Déterminer les limites suivantes :

$$\lim_{x \to 0} \frac{\sin x}{x} \qquad ; \lim_{x \to 1} \frac{\sqrt{2x+2}-2}{x-1} \qquad ; \lim_{x \to 0} \frac{e^{x}-1}{x}$$

Réponse:

Dans chacun des cas, il s'agit de faire apparaître un quotient de la forme $\frac{f(x)-f(a)}{x-a}$, c'est-à-dire le taux d'accroissement, afin d'appliquer la limite, donc le nombre dérivé.

1ère exemple :

 $x \to \frac{\sin x}{x}$, définie pour tout réel x non nul.

La limite à étudier est en x = 0, avec $f(x) = \sin x$, on a $f(a) = f(0) = \sin 0 = 0$. Ainsi,

$$\frac{\sin x}{x} = \frac{f(x) - f(0)}{x - 0}$$

Revenons à la limite : $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$

D'autre part, $f'(x) = (\sin x)' = \cos x$, donc $f'(0) = \cos 0 = 1$

En conclusion,

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

2ème exemple :

 $x \to \frac{\sqrt{2x+2}-2}{x-1}$, définie pour tout réel $x \neq 1$, peut s'écrire sous la forme d'un taux d'accroissement avec $f(x) = \sqrt{2x+2}$.

La limite étant en x = 1, on a $f(1) = \sqrt{2 \times 1 + 2} = 2$.

Tous les éléments sont réunis pour appliquer la méthode.

$$\lim_{x \to 1} \frac{\sqrt{2x+2}-2}{x-1} = \lim_{x \to 1} \frac{f(x)-f(1)}{x-1} = f'(1)$$

Calculons la dérivée de $f: f'(x) = \frac{2}{2\sqrt{2x+2}} = \frac{1}{\sqrt{2x+2}}$.

Ainsi,
$$f'(1) = \frac{1}{\sqrt{2 \times 1 + 2}} = \frac{1}{2}$$

Finalement,

$$\lim_{x \to 1} \frac{\sqrt{2x+2}-2}{x-1} = \frac{1}{2}$$

3^{ème} exemple:

Cet exemple constitue le dernier complément à apporter sur les limites de la fonction exponentielle.

 $x \to \frac{e^x - 1}{x}$, définie pour tout réel non nul, s'écrit sous la forme du taux d'accroissement $\frac{f(x) - f(a)}{x - a}$ avec $f(x) = e^x$ et a = 0.

En effet, si $f(x) = e^x$, alors $f(0) = e^0 = 1$.

Nous avons alors,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$$

Or,
$$f'(x) = (e^x)' = e^x$$
, donc $f'(0) = e^0 = 1$

Ainsi,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Remarque:

Chacun de ces résultats ne correspond en fait qu'au coefficient directeur de la tangente à la courbe de la fonction f en x = a...

Limites par composition:

Nous allons ici amener la méthode afin de déterminer la limite des fonctions pouvant s'écrire sous la forme f(g(x)).

Soit f, g, 2 fonctions définies respectivement sur I = g(J) et J, $a \in J$, $b \in I$ et c un nombre réel (a, b, c) peuvent éventuellement être égaux à $\pm \infty$).

Si
$$\lim_{x \to a} g(x) = b$$
 Alors,
Et $\lim_{X \to b} f(X) = c$ $\lim_{x \to a} f(g(x)) = c$

Exemples:

Déterminer les limites suivantes :

$$\lim_{x \to 1^{+}} \sqrt{\frac{2}{x^{2} - 1}} \quad ; \lim_{x \to +\infty} e^{-x^{2} + 1} \quad ; \lim_{x \to -\infty} \sin(\frac{\pi x - 1}{3x + 1})$$

Réponse:

Dans chacun des cas, il faut commencer par identifier la composition mise en jeu dans la limite demandée.

-
$$x \to \sqrt{\frac{2}{x^2 - 1}}$$
 est le composée de $x \to \frac{2}{x^2 - 1}$, dans la fonction racine carrée $x \to \sqrt{x}$.

Passons à la limite :

$$\lim_{r\to 1^+} \frac{2}{r^2-1}$$
:

En dressant le tableau de signes de $x \to x^2 - 1$, il est clair que $\lim_{x \to 1^+} x^2 - 1 = 0^+$

De plus,
$$\lim_{x \to 1^{+}} 2 = 2$$
.

Donc par quotient, $\lim_{x\to 1^+} \frac{2}{x^2-1} = +\infty$

Puis,
$$\lim_{X \to +\infty} \sqrt{X} = +\infty$$
. Donc Par composition, $\lim_{x \to 1^+} \sqrt{\frac{2}{x^2 - 1}} = +\infty$

Remarque:

Nous pourrions dire ici, que la droite d'équations x = 1 est une asymptote verticale de la courbe représentative de la fonctions $x \to \sqrt{\frac{2}{x^2-1}}$.

- $x \to e^{-x^2+1}$ est la composée de la fonction $x \to -x^2+1$, dans la fonction exponentielle $x \to e^x$.

Passons à la limite :

$$\lim_{x \to +\infty} -x^2 + 1 = -\infty, \text{ et } \lim_{x \to -\infty} e^X = 0.$$

Donc par composition, $\lim_{x \to +\infty} e^{-x^2+1} = 0$.

Remarque:

Nous pourrons remarquer ici, que la droite d'équation y=0 est une asymptote horizontale en $+\infty$ pour la courbe représentative de la fonctions $x \to e^{-x^2+1}$.

- $x \to \sin(\frac{\pi x - 1}{3x + 1})$ est la composée de $x \to \frac{\pi x - 1}{3x + 1}$, dans la fonction sinus $x \to \sin x$.

Passons à la limite :

$$\lim_{x \to -\infty} \frac{\pi x - 1}{3x + 1} = \lim_{x \to -\infty} \frac{\pi x}{3x} = \lim_{x \to -\infty} \frac{\pi}{3} = \frac{\pi}{3}, \text{ et } \lim_{X \to \frac{\pi}{3}} \sin X = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}.$$

Donc, par composition, $\lim_{x \to -\infty} \sin(\frac{\pi x - 1}{3x + 1}) = \frac{\sqrt{3}}{2}$.

Remarque:

On pourrait dire ici que la droite d'équation $y = \frac{\sqrt{3}}{2}$ est une asymptote horizontale en $-\infty$ pour la courbe représentative de la fonctions $x \to \sin(\frac{\pi x - 1}{3x + 1})$.

Limite de fonctions rationnelles type « $\frac{P(x)}{Q(x)} \rightarrow \frac{0}{0}$ » :

Nous allons aborder ici les limite des fonctions rationnelles qui aboutirons à la forme indéterminée de type « $\frac{0}{0}$ ».

Principe de la méthode :

On définit P et Q, 2 polynômes tels que P(a) = Q(a) = 0.

En utilisant le cours de 1ère sur les polynômes, nous savons que :

Si P(a) = 0, alors on peut factoriser P par (x - a)

Si Q(a) = 0, alors on peut factoriser Q par (x - a)

Ainsi, le quotient $\frac{P(x)}{Q(x)}$ peut être simplifié par le facteur commun (x - a).

Exemples:

Déterminer les limites suivantes :

$$\lim_{x \to 3} \frac{2x^2 + 4x - 30}{x - 3} \text{ et } \lim_{x \to +1} \frac{x^2 + 6x - 7}{3x^2 + 3x - 6}$$

Réponse:

-
$$\lim_{x\to 3} \frac{2x^2+4x-30}{x-3}$$
:

Cette limite fait intervenir la fonction rationnelle $f(x) = \frac{2x^2 + 4x - 30}{x - 3}$, de la forme $f(x) = \frac{P(x)}{Q(x)}$ avec $P(x) = 2x^2 + 4x - 30$ et Q(x) = x - 3.

Or,
$$\lim_{x\to 3} P(x) = P(3) = 0$$
 et $\lim_{x\to 3} Q(x) = Q(3) = 0$.

Nous avons donc bien une forme indéterminée de type « $\frac{0}{0}$ ».

Ici, il suffit de factoriser P car Q est de degré 1, donc déjà « prêt ».

P(3) = 0, donc $x_1 = 3$ est une racine de P.

Or, on rappelle que le produit des racines $x_1 \times x_2 = \frac{c}{a}$

Donc
$$3x_2 = -\frac{30}{2} = -15 \Leftrightarrow x_2 = -\frac{15}{3} = -5$$

Ainsi, la forme factorisée de P est : P(x) = 2(x-3)(x+5).

Nous pouvons alors réécrire la fonction f:

$$f(x) = \frac{2(x-3)(x+5)}{x-3} = 2(x+5)$$

Finalement,

$$\lim_{x \to 3} \frac{2x^2 + 4x - 30}{x - 3} = \lim_{x \to 3} 2(x + 5) = 16$$

Remarque:

Il aurait été possible ici d'utiliser la méthode de la limite par le nombre dérivée :

$$u'(a) = \lim_{x \to a} \frac{u(x) - u(a)}{x - a}$$
 avec $u(x) = 2x^2 + 4x$ et $a = 3$

$$- \lim_{x \to +1} \frac{x^2 + 6x - 7}{3x^2 + 3x - 6}:$$

Cette limite fait intervenir la fonction rationnelle $f(x) = \frac{x^2 + 6x - 7}{3x^2 + 3x - 6}$, de la forme $f(x) = \frac{P(x)}{Q(x)}$ avec $P(x) = x^2 + 6x - 7$ et $Q(x) = 3x^2 + 3x - 6$.

Or,
$$\lim_{x \to 1} P(x) = P(1) = 0$$
 et $\lim_{x \to 1} Q(x) = Q(1) = 0$.

Nous avons donc bien une forme indéterminée de type « $\frac{0}{0}$ ».

Ici, P(1) = Q(1) = 0, donc $x_1 = 1$ est une racine de P et Q.

Utilisons à nouveau le produit des racines $x_1 \times x_2 = \frac{c}{a}$ avec $x_1 = 1$, donc $x_2 = \frac{c}{a}$.

Pour le polynôme P, on a $x_2 = \frac{-7}{1} = -7$

Puis pour *Q*, on a $x_2 = -\frac{6}{3} = -2$.

Ainsi, les formes factorisées sont P(x) = (x-1)(x+7) et Q(x) = 3(x-1)(x+2).

Nous pouvons alors simplifier $f: f(x) = \frac{x^2 + 6x - 7}{3x^2 + 3x - 6} = \frac{(x - 1)(x + 7)}{3(x - 1)(x + 2)} = \frac{x + 7}{3(x + 2)}$

Revenons à présent à la limite :

$$\lim_{x \to +1} \frac{x^2 + 6x - 7}{3x^2 + 3x - 6} = \lim_{x \to +1} \frac{x + 7}{3(x + 2)} = \frac{1 + 7}{3(1 + 2)} = \frac{8}{9}$$